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1. Intro

The main source for this talk is [BCSY23], and all results cited with no other
source specified (e.g. “from Proposition 2.29”) are from this paper.

We have two main theorems to prove. The first is that KT (n+1) is p-typically
semiadditive. The second is that it preserves certain Galois extensions of T (n)-
local rings. To prove the first theorem, we will need to use some facts about group
algebras and their colimits.

2. Group Algebras

Theorem 2.1 (Corollary 3.6). We have an equivalence Perf(R[ΩA]) ≃ Perf(R)[A]

in Catperf , symmetric-monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(Sp).

To prove this, we’ll first prove a fact about colimits. Recall that given a functor
F : C → D, an object X ∈ C, and a space A, the universal property of colimits gives
us an “assembly map” F (X)[A] → F (X[A]). Suppose that C and D are moreover
symmetric monoidal, and F is a lax symmetric monoidal functor.

Lemma 2.2. In this case, the assembly map is canonically lax symmetric monoidally
natural in X and A.

Proof sketch. Let Ĉatall denote the category of cocomplete categories and cocontin-

uous functors, and let C be an object of CAlg(Ĉatall). There is an obvious symmetric
monoidal functor i : C → S×C which is the point on the first factor and the identity
on the second. Left Kan extension along i is a functor i! : Fun(C, C) → Fun(S×C, C)
sending idC to the functor (X,A) 7→ X[A]. Because i is symmetric monoidal, this
induces an adjunction on lax functor categories, giving i!(idC) a lax symmetric
monoidal structure; in fact, it is strong, because ⊗C preserves colimits. This proves
our result in the special case F = idC .

Now, let F : C → D be as given. We can produce a commutative square of lax
functor categories, use it to produce a Beck-Chevalley map, and evaluate at idC to
get the desired assembly map. □

We will also need the following result, which explicitly computes group algebras
in PrL.

Lemma 2.3. There is a symmetric monoidally natural equivalence LModΩA(C) ≃
C[A] in PrL for A ∈ S≥1

∗ .

Date: February 21, 2024.

1



2 DORON GROSSMAN-NAPLES

Proof. These are two symmetric monoidal functors PrL × S≥1
∗ → PrL. Products

and coproducts coincide for symmetric monoidal categories, so this equivalence
can be constructed on each component separately. On the first, they’re both the
identity functor, so it’s enough to prove this for C = S: LModΩA(S) ≃ S[A]. Some
abstract nonsense shows that these are both fully faithful when viewed as functors
to PrL∗ , and it is shown in [CSY21b] that they have the same essential image. Since
the category of pointed connected spaces has no nontrivial symmetric monoidal
auto-equivalences, the functors must be equivalent. □

Corollary 2.4. We have a symmetric monoidally natural equivalence LModR[ΩA](C) ≃
LModR(C)[A] in PrL∗ . □

Proof of Thm. Take C = Sp in the above corollary. We know that PrLst,ω ↪−→ PrLst
preserves colimits, and the categories in question are both in this subcategory.
Applying the compact objects functor (−)ω gives the desired equivalence. □

3. Semiadditivity of Localized K-theory

We are ready to prove our first main theorem.

Theorem 3.1. The functor KT (n+1) : CatMf
n
→ SpT (n+1) is p-typically ∞-semiadditive;

that is, it preserves limits and colimits indexed over π-finite p-spaces.

Proof. We prove this through a series of reductions.
Firstly, because both of these categories are themselves ∞-semiadditive, we only

need to prove preservation of colimits.
Secondly, by an earlier result from our study of semiadditivity (Prp 2.29), it is

enough to prove this for constant diagrams indexed over Eilenberg-MacLane spaces.
This amounts to showing that the assembly map KT (n+1)(C)[A] → KT (n+1)(C[A])
is an isomorphism for A = K(G,m) where G is a finite p-group. Now, we induct
on m.

The case m = 0 is easy: this just requires preservation of coproducts, which
follows from exactness of KT (n+1). The case m = 1 follows from Theorem 4.12 of

[CMNN20] with E = Lf
nS. Henceforth, assume m ≥ 2.

We can reduce to the case C ≃ Perf(R), R ∈ Mf
nSp: by a corollary of the

Schwede-Shipley theorem (Prp 2.9), C is a filtered colimit of categories of the form
Perf(Ri), where the Ri are endomorphism rings of objects of C and are thus n-
monochromatic. Since KT (n+1) preserves filtered colimits, we may assume C is of
this form.

This is where Corollary 3.6 enters the picture. Since we are assuming m ≥ 2,
both A and ΩA are connected; so by that result, our map is KT (n+1)(R)[A] →
KT (n+1)(R[ΩA]).

Finally, there are two cases to consider. Firstly, suppose n = 0. Then R is
rational, so R[ΩA] ≃ R[∗] ≃ R because Eilenberg-MacLane spaces of finite groups
have no rational cohomology. Also, by a result of [CSY21a], constant A-shaped
colimits in SpT (1) do not change the object, i.e. colimA X ≃ X naturally. So in
this case, the assembly map is the identity.

Secondly, we have the n ≥ 1 case. We use the bar construction to write A ≃
colim∆op Ak, where Ak := (ΩA)k. We have a commutative diagram:
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colim∆op KT (n+1)(R)[Ak] colim∆op KT (n+1)(R[ΩAk])

KT (n+1)(colim∆op R[ΩAk])

KT (n+1)(R)[colim∆op Ak] KT (n+1)(R[Ω colim∆op Ak])

The top horizontal map is an isomorphism by our inductive hypothesis. The left
vertical map is an isomorphism because KT (n+1)(R)[−] preserves colimits. Since
n ≥ 1, a corollary of purity ([LMMT20]) implies KT (n+1) preserves sifted colimits,
so the top right vertical map is an isomorphism. Finally, R[Ω(−)] preserves sifted
colimits, so the bottom right vertical map is an isomorphism. It follows from all of
this that the lower horizontal map is an isomorphism, which is what we wanted to
show. □

There are some cool corollaries of this that I’ll present without proof.
Corollary 3.2.

• This remains true if we replace the domain with CatLf
n
.

• There is a symmetric monoidally natural map KT (n+1)(R)[A] → KT (n+1)(R[ΩA]),
which is an equivalence when A is a sifted colimit of pointed π-finite p-
spaces.

• KT (n+1) : CAlg(SpT (n)) → CAlg(SpT (n+1)) preserves limits indexed by n-

finite p-spaces. In particular, KT (n+1)(R
A) ≃ KT (n+1)(R)A.

• For Lf
n-local categories with m-finite colimits, KT (n+1) coincides with K

[m]
T (n+1),

the T (n+1)-localization of the universal m-semiadditive version of algebraic
K-theory.

4. Higher Galois Descent

Stating our second main theorem will require some definitions.

Definition 4.1. Let C be symmetric monoidal, and suppose BG ∈ S≥1
∗ is weakly

C-ambidextrous with diagonal ∆. Write q for the tautological map BG → ∗ and
e for the basepont map ∗ → BG. We say a G-equivariant commutative algebra
R : BG → CAlg(C) is Galois if

i) The map 1 → q∗R =: RhG obtained by transposing the unit is an isomorphism;
and

ii) The map R ⊗ R → ∆∗R =: RG obtained by transposing multiplication is an
isomorphism.

(I will refer to these as the extension and separability conditions, respectively.)
In the classical case of a finite Galois extension L/K with Galois group G, C

would be ModK , R would be L with the Galois action, the extension condition
would be the fixed-point isomorphism, and the separability condition would be the
isomorphism L⊗K L ∼= LG.



4 DORON GROSSMAN-NAPLES

We can apply the functor Mod(−)(C) to R to get a G-equivariant C-linear sym-
metric monoidal category ModR(C), which comes with a symmetric monoidal func-
tor R ⊗ (−) : C → ModR(C)hG. In the classical case, this is an equivalence. As
it turns out, it is also an equivalence here provided that R is faithful, meaning
R(∗)⊗M ≃ 0. I’ll skip the proof for time, but suffice to say it involves moving the
BG around and studying a mild generalization of the separability isomorphism.

A result from [CMNN20] will prove useful, allowing us to reduce to dualizable
objects in proving our second main theorem. Let A be a T (n)-local E∞-ring, and
write K ′(A) for the K-theory of the category of dualizable objects in T (n)-local
A-modules. Because this includes Perf(A) as a subcategory, we get an induced
map K(A) → K ′(A).

Lemma 4.2. The homotopy fiber of K(A) → K ′(A) is naturally a module over

K(Lf
n−1S).

We finally have the language and tools to state and prove our second main
theorem.

Theorem 4.3. Let n ≥ 0, and let G an n-finite p-group. For every T (n)-local
G-Galois extension R → S, the induced T (n+ 1)-local G-extension KT (n+1)(R) →
KT (n+1)S is Galois.

Proof. By Galois descent, we have ModR(SpT (n)) ≃ ModS(SpT (n))
hG. We can

pass to the dualizable objects, so ModR(SpT (n))
dbl ≃

(
ModS(SpT (n))

hG
)dbl

. This

operation commutes with taking homotopy fixed points by a result of Lurie (in

HA), so ModR(SpT (n))
dbl ≃

(
ModS(SpT (n))

dbl
)hG

. Finally, we have isomorphisms

KT (n+1)R ≃ KT (n+1)(ModR(SpT (n))
dbl) by lemma

≃ KT (n+1)

((
ModS(SpT (n))

dbl
)hG

)
by the above

≃ KT (n+1)

(
ModS(SpT (n))

dbl
)hG

by our other main theorem

≃ KT (n+1)(S)
hG by lemma,

which proves the extension condition. A result of [BCSY22] implies that the sepa-
rability condition is automatic, which concludes the proof. □
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